
Supplementary Material: Unified Meta-Representation and
Feedback Calibration for General Disturbance Estimation

This supplementary material provides supplementary details, proofs, and experimental setups referenced
in the main paper: Unified Meta-Representation and Feedback Calibration for General Disturbance
Estimation. It includes meta-learning configurations, theoretical proofs, simulation and real-world experiment
parameters, and additional results to support the claims and methodology presented.

I. DETAILS ON META-LEARNING SETUPS

A. Model Architecture

The meta-learner is a fully-connected neural network with 2 hidden layers. The first layer has 32 neurons,
and the second layer has 3 neurons (the latent space has a dimension of 3), each with a Tanh activation
function. The input of the model is a time-delay embedded state z = [xt,xt−1, · · · ,xt−M ], where xt is the
current state and xt−1, · · · ,xt−M are the previous states. The fully-connected layer serves as the adaptive
layer model parameter θ obtained by the base-learner in meta-learning and tracked by the adaptive law online.

B. Domain Randomization for Representation Learning

The velocity in the earth-fixed frame (see Section.III) is selected to be the state for the time-delay
embedding. The output of the model is the force disturbance d ∈ R3. Domain randomization is applied
on the initial condition of x, hyperparameters of polynomial reference trajectories, as well as the magnitude
and frequency of the generated force disturbances. 10 groups of initial position, velocity, and Euler angles
are randomly sampled within a limited range around the referenced state for each trajectory in the batch
simulation. 40 polynomial trajectories are generated with randomly sampled positional waypoints in a limited
space with random maximum acceleration ranging from 5m/s to 10m/s and random discrete nodes ranging
from 200 to 400. The disturbances d̄ are generated using sinusoidal functions with a magnitude range of 0N
to 3N and frequency from 0Hz to 0.5Hz, which can be regarded as non-structural disturbances. Finally, based
on the ablation study, we select a 3-step time-delay embedded representation model for its good trade-off in
performance and complexity.

C. Meta-Learning Datasets and Training Setups

The meta-learning dataset is constructed by reshaping the batch simulation data into multiple trajectory
segments. Each trajectory segment has a length of N +M +H , where N is the regression length, M is the
time-delay embedding length and H is the prediction horizon. The regression solver in base-learner outputs
the model parameter θ for the next H steps based on the past N sequential data. For current disturbance
prediction, H is set to be 1. Such segments form the dataset meta-learn, which are then split into meta-learn
and out-of-distribution sets with a ratio of 80% and 20%. The mini-batch size is selected to be 200, i.e.,
200 trajectory segments are jointly trained in each iteration. The base-learner uses an L2 regularization with
a weight of 0.01 to avoid overfitting, the meta-learner is trained with L1 regularization with a weight of
0.001 to create a sparse representation model. For the meta-learning, the meta-learner is trained with 200
iterations with an initial learning rate of 0.01 with dataset meta-learn. A further validation is conducted with
the dataset out-of-distribution, where the magnitude range and frequency of the generated force disturbances
are increased to 0N to 5N and 0Hz to 1Hz respectively.

II. PROOF OF THEORETICAL RESULTS

A. Proof of Theorem 1

We prove the convergence of the disturbance estimation error d̃ = d̂−d using Lyapunov stability analysis.
Consider the positive definite Lyapunov function candidate:

V =
1

2
d̃⊤d̃. (1)



This function measures the squared magnitude of the estimation error.
From the feedback-calibration mechanism (Equation 6.) and the disturbance model d = dmodel + γ, we

obtain the error dynamics:
˙̃
d =

˙̂
d− ḋ = γ̇ −Ld̃ (2)

where γ is the learning residual satisfying ∥γ∥ ≤ γ̄ by Assumption 1.
Differentiating the Lyapunov function yields:

V̇ = d̃⊤ ˙̃
d

= d̃⊤(γ −Ld̃)

= −d̃⊤Ld̃+ d̃⊤γ̇ (3)

Applying Young’s inequality to the cross term:

d̃⊤γ̇ ≤ λm(L)

2
∥d̃∥2 + 1

2λm(L)
γ̄2 (4)

where λm(L) is the minimum eigenvalue of L. This leads to:

V̇ ≤ −λm(L)

2
∥d̃∥2 + 1

2λm(L)
γ̄2 (5)

Using the comparison lemma, we obtain the solution:

V (t) ≤ e−λm(L)tV (0) +
γ̄2

2λm(L)2
(1− e−λm(L)t) (6)

The disturbance estimation error converges exponentially to the bounded set:

lim
t→∞

∥d̃∥ ≤ γ̄

λm(L)
(7)

This shows that the estimation error remains bounded and can be made arbitrarily small by increasing
the feedback gain L. The convergence rate is determined by λm(L), with larger gains leading to faster
convergence.

B. Proof of Theorem 2

We utilize Lyapunov stability analysis to prove the simultaneous convergence of both the disturbance
estimation error d̃ and parameter estimation error θ̃.

Consider the Lyapunov function:

V =
1

2
d̃⊤d̃+

1

2
θ̃⊤θ̃. (8)

The online learning residual ζ is defined as: ζ = γ+ϕt(z)θ̃, where the learning residual γ = d−ϕt(z)θ
∗

is augmented with online parameter estimation error ϕt(z)θ̃.
For simplicity, we assume the concurrent number Nc = 1, which refers to a standard composite adaptive

law. The proof is similar for Nc > 1, but the persistence of excitation condition of ϕt(z) is replaced by a
finite time excitation condition [1], [2].

Differentiating V yields:

V̇ = d̃⊤ ˙̃
d+ θ̃⊤ ˙̃

θ

= d̃⊤(−Ld̃+ ζ̇) + θ̃⊤
(
θ̇∗ − ϕt(z)

⊤P
(
d− ϕt(z)θ̂

))
= −d̃⊤Ld̃+ d̃⊤ζ̇ + θ̃⊤θ̇∗ − θ̃⊤Pϕt(z)

⊤ϕt(z)θ̃ − θ̃⊤Pϕt(z)
⊤γ

(9)



where

d̃⊤ζ̇ = d̃⊤ḋ− d̃⊤ḋmodel + d̃⊤γ̇

= d̃⊤ϕt(z)
˙̃
θ + d̃⊤ϕ̇t(z)θ̃ + d̃⊤γ̇

= d̃⊤ϕt(z)θ̇∗ − d̃⊤ϕt(z)Pϕt(z)
⊤(ϕt(z)θ̃ + γ) + d̃⊤ϕ̇t(z)θ̃ + d̃⊤γ̇.

(10)

Applying Young’s inequality to the cross terms:

θ̃⊤θ̇∗ ≤ 1

2
|λm(Pϕt(z)

⊤ϕt(z))|θ̃⊤θ̃ +
1

2|λm(Pϕt(z)⊤ϕt(z))|
d̄θ

− θ̃⊤Pϕt(z)
⊤γ ≤ 1

2
θ̃⊤θ̃ +

1

2
|λM (Pϕt(z)

⊤)|γ̄2,

d̃⊤ϕt(z)θ̇∗ ≤ 1

2
d̃⊤d̃+

1

2
|λM (ϕt(z))|d̄θ

2
,

− d̃⊤ϕt(z)Pϕt(z)
⊤ϕt(z)θ̃ ≤ 1

2
d̃⊤d̃+

1

2
|λM (ϕt(z)Pϕt(z)

⊤ϕt(z))|θ̃⊤θ̃,

− d̃⊤ϕt(z)Pϕt(z)
⊤γ ≤ 1

2
d̃⊤d̃+

1

2
|λM (ϕt(z)Pϕt(z)

⊤)|γ̄2,

d̃⊤ϕ̇t(z)θ̃ ≤ 1

2
d̃⊤d̃+

1

2
|λM (ϕ̇t(z))|θ̃⊤θ̃,

d̃⊤γ̇ ≤ 1

2
|λm(L)|d̃⊤d̃+

1

2|λm(L)|
d̄γ

2
,

(11)

where λm(L) and λM (L) are the minimum and maximum eigenvalue of L, respectively.
Rearranging the terms, we have:

V̇ ≤− 1

2
µ1θ̃

⊤θ̃ − 1

2
µ2d̃

⊤d̃+ δ

(12)

where:

µ1 = |λm(Pϕt(z)
⊤ϕt(z))| − |λM (ϕ̇t(z))| − |λM (ϕt(z)Pϕt(z)

⊤ϕt(z))| − 1

µ2 = λm(L)/2− 2

δ =
1

2

(
1

|λm(Pϕt(z)⊤ϕt(z))|
+ |λM (ϕt(z))|

)
d̄θ

2

+
1

2

(
|λM (Pϕt(z)

⊤)|+ |λM (ϕt(z)Pϕt(z)
⊤)|

)
γ̄2

+
1

2|λm(L)|
d̄γ

2

(13)

We can choose the feedback gain L and the adaptive gain P such that: µ1 > 0 and µ2 > 0. Based on
Assumption 2, δ can be bounded by δ̄. With µ = max(µ1, µ2), we yield:

V̇ ≤ −µ

2

(
θ̃⊤θ̃ + d̃⊤d̃

)
+ δ̄ = −µ

2
V + δ̄ (14)

We obtain the solution of the above differential inequality:

V (t) ≤ e−
µ
2 tV (0) + δ̄(1− e−

µ
2 t) (15)

Taking the limit as t → ∞, we have:
lim
t→∞

V (t) ≤ δ̄ (16)

This implies that both d̃ and θ̃ converge to bounded sets, the bound δ̄ can be further regularized by the
design of L, P and ϕt(z), which completes the proof.
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Fig. A1. Quadrotor dynamics.

III. DETAILS IN SIMULATED EXPERIMENTS

A. Quadrotor Dynamics

The quadrotor system is modeled using a 12-dimensional state vector x = [p,v,Θ,ω]⊤ ∈ R12, where
p and v represent position and velocity in the earth-fixed frame E = {XE ,YE ,ZE}, while ω denotes
angular velocity in the body-fixed frame B = {XB ,YB ,ZB}. The system is controlled through four motor
thrust inputs u = [T1, T2, T3, T4]

⊤ ∈ R4. The transformation between frames is determined by Euler angles
Θ ∈ R3. The complete dynamics is described in Figure.A1, where m is the quadrotor mass, g is gravitational
acceleration, W (·) is the Euler angle rotation matrix, and C is the control allocation matrix. The mass of
the quadrotor is set to be 0.83 kg, and the inertia matrix is J = diag{[0.003, 0.003, 0.004]} kg ·m2.

B. Tracking Controller

For trajectory tracking, we utilize a differential flatness-based controller (DFBC) [3], [4] as a baseline
controller. DFBC consists of an up-level translational controller and a low-level attitude controller, where
the former controller outputs a desired acceleration indicating the desired attitude, the input of the low-
level controller. The estimated disturbance is removed from the desired acceleration for compensation.
The translational controller is designed to minimize the tracking error of the position and velocity with
a proportional-integrating-derivative (PID) controller:

ades = Kd(Kp(pd − p) + vd − v)− d̂+ ad +mgZE (18)

where d̂ is the estimated force disturbance, pd, vd and ad are the desired position, velocity and acceleration
computed by the reference trajectory generator, Kp, Kd and Ki are the proportional, derivative and integral
gains. The low-level attitude controller generates desired thrust and attitude commands based on reference
trajectories, which are then converted to motor thrust commands, details refer to [3], [5].

The parameters of the adaptive law and meta-representation in simulation are shown in Table.A1.

TABLE A1
ONLINE ADAPTATION PARAMETERS IN SIMULATION

Parameter Value Description
L diag{2.0, 2.0, 2.0} Feedback gain for calibration
PL1

2.0 ∗ I3×3 Adaptive gain in L1 adaptive estimator
fL1

0.25 Low-pass filter gain in L1 adaptive estimator
P 5.0 ∗ I9×9 Adaptive gain for online parameter estimation
Γ 5.0 ∗ I9×9 Adaptive gain for online parameter estimation
Nc 10 Number of concurrent learning samples
M 3 Time-delay embedding dimension
N 10 Model Regression length
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Fig. A2. The results of disturbance estimation in simulated cases.

C. Simulation Environment

The environment in the current simulation is defined as follows: 1. An external payload of 200 g (25%
of the original weight) on to the quadrotor. 2. A classical model [6]: RDR⊤v is used for drag simulation,
where R refers to the current rotational matrix that maps the body-fixed frame B to the earth-fixed frame
E , and D = diag{[0.6, 0.6, 0.1]} is a coefficient matrix. 3. Constant force disturbance of 1.0N is injected
into the x and y-axis in B. The simulation frequency is set to be 50Hz.

D. Results of Disturbance Estimation

4 results out of 7 are chosen to be plotted, where the proposed meta-representation (Meta-Adapt) outper-
forms the previous 2 methods and further improved by the feedback calibration (see Figure.A2).

IV. DETAILS IN REAL-WORLD EXPERIMENTS

A. Quadrotor Platform

The quadrotor platform weights 0.83 kg, and the inertia matrix is J = diag{[0.003, 0.003, 0.004]} kg ·m2.
The acceleration measurement is filtered with a 10Hz second-order low-pass filter. for the online disturbance
estimation. The motion capture system provides a sample rate of 200Hz for position and velocity feedback,
the localization accuracy is around 1mm.

B. Tracking Controller

As same as that in the simulated experiments, the tracking controller in real-world experiments is a
differential flatness-based controller (DFBC). In the positional controller, an integration controller is added
to improve the tracking performance:

ades = Kd(Kp(pd − p) + vd − v)− d̂+ ad +mgZE +Ki

∫ t

0

(pd − p)dt (19)



where Ki is the integration gain. The DFBC controller operates with the positional controller running at
100Hz and the attitude controller at 500Hz. The proposed estimator runs at 100Hz together with the
positional controller.

C. Model Parameters

The parameters of the adaptive law and meta-representation are listed in Table.A2, S1 for Scenario.1 and
S2 for Scenario.2.

TABLE A2
ONLINE ADAPTATION PARAMETERS IN REAL-WORLD EXPERIMENTS

Parameter Value Description
L diag{0.8, 0.8, 0.8} Feedback gain for calibration
P 4.0× I9×9 Adaptive gain for parameter estimation
Γ 4.0× I9×9 (control) / 09×9 (estimation) Adaptive gain for parameter estimation
N 10 and 20 (S1) / 10 (S2) Model Regression length
Nc 1 (S1) / 5 (S2) Number of concurrent learning samples
M 0 (S1) / 3 (S2) Time-delay embedding dimension

D. Results of Disturbance Estimation

The results of disturbance estimation in Scenario.1 and Scenario.2 are shown in Figure.A4 and Figure.A5,
respectively. 4 results out of 7 are chosen to be plotted in each scenario, the proposed method outperforms
the baseline methods in both scenarios.

E. Ablation Study on the Adaptation Gain

In Scenario.2, the effect of the adaptation gain P is studied. The adaptation gain P is set from 0.1×I9×9

to 5.0× I9×9, and the feedback gain L is set to be 0.8× I3×3. The results are shown in Figure.A6, a higher
adaptation gain P leads to faster convergence of the disturbance estimation.
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Fig. A4. The results of disturbance estimation in Scenario.1.
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Fig. A5. The results of disturbance estimation in Scenario.2.
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Fig. A6. Ablation Study on different adaptation gains.
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